Corrigé du Concours National Commun

Épreuve de Mathématiques II Session 2021 - Filière MP

m.laamoum@gmail.com

Exercice

1. a) On a $\det_{\mathcal{B}}(e_1', e_2', e_3') = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{vmatrix} = -1$ donc la famille (e_1', e_2', e_3') est libre, de plus elle a 3 éléments en dimension 3, donc $\mathcal{B}' = (e_1', e_2', e_3')$ est une base de E.

$$\mathbf{b)} \quad \text{On a } [e_1']_{\mathcal{B}} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ [e_2']_{\mathcal{B}} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ et } [e_3']_{\mathcal{B}} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

On vérifie facilement que :

 $[f_a(e_1')]_{\mathcal{B}} = M_a [e_1']_{\mathcal{B}} = [e_1']_{\mathcal{B}}, \quad [f_a(e_2')]_{\mathcal{B}} = M_a [e_2']_{\mathcal{B}} = a [e_2']_{\mathcal{B}} \text{ et } [f_a(e_3')]_{\mathcal{B}} = M_a [e_3']_{\mathcal{B}} = (1-a) [e_3']_{\mathcal{B}}.$ Par suite $f_a(e_1') = e_1', \quad f_a(e_2') = a \ e_2' \text{ et } f_a(e_3') = (1-a)e_3'$. Comme les vecteurs $e_1', \quad e_2' \text{ et } e_3' \text{ sont}$ non nuls alors ils sont des vecteurs propres de f_a associés respectivement aux valeurs propres $1, \quad a$ et 1-a.

c) On a
$$P = \mathcal{P}_{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} e'_1 & e'_2 & e'_3 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}.$$

- d) E admet une base, \mathcal{B}' , formée de vecteurs propres de f_a , donc f_a est diagonalisable, par suite la matrice M_a est diagonalisable.
- e) $D_a = \text{diag}(1, a, 1-a)$.
- 2. On considère le système différentiel linéaire suivant :

(S)
$$\begin{cases} x'(t) = x(t) + y(t) - z(t) \\ y'(t) = -2x(t) + 5y(t) - 2z(t) \\ z'(t) = -2x(t) + 3y(t) \end{cases}$$

a) On a
$$\begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 5 & -2 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = M_3 \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}.$$

b) Soit $Y(t) = P^{-1}X(t)$. Donc $Y'(t) = P^{-1}X'(t)$ (car P^{-1} est une matrice constante). Comme $M_3 = PD_3P^{-1}$ avec $D_3 = \text{diag}(1, 3, -2)$ et $X'(t) = M_3X(t)$ alors :

$$Y'(t) = P^{-1}M_3X(t)$$

= $P^{-1}PD_3P^{-1}X(t)$
= $D_3P^{-1}X(t)$

1

ce qui donne $Y'(t) = D_3Y(t)$

c) La relation
$$Y'(t) = D_3Y(t)$$
 devient
$$\begin{cases} y_1'(t) = y_1(t) \\ y_2'(t) = 3y_2(t) \\ y_3'(t) = -2y_3(t) \end{cases}$$
 Donc
$$y_1(t) = \alpha e^t, y_2(t) = \beta e^{3t} \text{ et } y_1(t) = \gamma e^{-2t} \text{ avec } \alpha, \beta \text{ et } \gamma \text{ des constantes réelles}$$

d) On a X(t) = P Y(t) done

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} \alpha e^t \\ \beta e^{3t} \\ \gamma e^{-2t} \end{pmatrix} = \begin{pmatrix} \alpha e^t + \gamma e^{-2t} \\ \alpha e^t + \beta e^{3t} \\ \alpha e^t + \beta e^{3t} - \gamma e^{-2t} \end{pmatrix}$$

La solution générale de (S) est donnée par

$$X(t) = \alpha e^{t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta e^{3t} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \gamma e^{3t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \text{ avec } \alpha, \beta \text{ et } \gamma \text{ des constantes réelles}$$

e) Soit X une solution de (S) vérifiant x(0) = 0, y(0) = 1 et z(0) = 2, donc les constantes α, β et γ vérifient :

$$\begin{cases} \alpha + \gamma = 0 & (1) \\ \alpha + \beta = 1 & (2) \\ \alpha + \beta - \gamma = 2 & (3) \end{cases}$$

On a alors : (2) – (3) $\Rightarrow \gamma = -1$, (1) $\Rightarrow \alpha = 1$, (2) $\Rightarrow \beta = 0$.

Donc
$$X(t) = \begin{pmatrix} e^t - e^{-2t} \\ e^t \\ e^t + e^{-2t} \end{pmatrix}.$$

Problème

Partie 1

Cas où A est une matrice possédant n valeurs propres distinctes

Soit $n \geq 2$, et A une matrice possédant n valeurs propres réelles distinctes $\lambda_1, ..., \lambda_n$ telles que $\lambda_1 < ... < \lambda_n$. On pose $D = \text{diag}(\lambda_1, ..., \lambda_n)$.

- 1. a) A une matrice de $\mathcal{M}_n(\mathbb{R})$ possédant n valeurs propres réelles distinctes, $\lambda_1,...,\lambda_n$, donc elle est diagonalisable, par suite il existe une matrice P inversible de $\mathcal{M}_n(\mathbb{R})$ telle que $A = PDP^{-1}$, avec $D = \operatorname{diag}(\lambda_1,...,\lambda_n)$.
 - b) Soit $R \in M_n(\mathbb{R})$ et $S = P^{-1}RP$. On a

$$R^2 = A \Leftrightarrow P^{-1}R^2P = D \Leftrightarrow S^2 = D$$

Donc R est une racine carrée de A si, et seulement si $S = P^{-1}RP$ est une racine carrée de D.

2. Soit Δ une racine carrée de la matrice D donc $\Delta^2 = D$.

- a) On a $\Delta D = \Delta^3$ et $D\Delta = \Delta^3$ donc $\Delta D = D\Delta$.
- b) Posons $\Delta = (\Delta_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$. On a $D = (\lambda_i \delta_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ avec $\delta_{i,j}$ le symbole de Kronecker . Le produit ΔD a pour coefficients :

$$\forall i, j, \quad \sum_{k=1}^{n} \Delta_{i,k} \ \lambda_k \ \delta_{k,j} = \Delta_{i,j} \ \lambda_j$$

et les coefficients de $D\Delta$ sont

$$\forall i, j, \sum_{k=1}^{n} \lambda_i \ \delta_{i,k} \ \Delta_{k,j} = \lambda_i \ \Delta_{i,j}$$

 $\Delta D=D\Delta$ donne $\Delta_{i,j}\lambda_j=\lambda_i\Delta_{i,j}\ \ \forall i,j$, les λ_k étant deux à deux distincts donc

$$\forall i \neq j, \quad \Delta_{i,j} = 0$$

et Δ est une matrice diagonale.

- c) On a $\Delta^2 = D$, $\Delta^2 = \operatorname{diag}(\delta_1^2, \dots, \delta_n^2)$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ donc $\delta_i^2 = \lambda_i \ \forall i \in [1, n]$.
- 3. Supposons qu'il existe $i_0 \in \llbracket 1, n \rrbracket$ tel que $\lambda_{i_0} < 0$. Soit $R \in \mathcal{R}_n(A)$ alors $\Delta = P^{-1}RP$ est une racine de D.D'après la question 2) Δ est diagonale, $\Delta = \operatorname{diag}(\delta_1, \ldots, \delta_n)$ et $\delta_i^2 = \lambda_i \ \forall i \in \llbracket 1, n \rrbracket$, donc $\delta_{i_0}^2 = \lambda_{i_0} < 0$ ce qui est absurde. Donc $\mathcal{R}_n(A) = \emptyset$.
- **4.** On suppose que $0 \le \lambda_1 < \ldots < \lambda_n$.
 - a) Une racine carrée de D est de la forme $\Delta = \operatorname{diag}(\delta_1, \ldots, \delta_n)$ avec $\delta_i^2 = \lambda_i \ \forall i \in [\![1, n]\!]$, donc $\delta_i = \pm \sqrt{\lambda_i} \ \forall i \in [\![1, n]\!]$. La réciproque est évidente . Ainsi : $\left[\mathcal{R}_n(D) = \left\{\operatorname{diag}\left(\varepsilon_1\sqrt{\lambda_1}, \ldots, \varepsilon_n\sqrt{\lambda_n}\right) \mid (\varepsilon_1, \ldots, \varepsilon_n) \in \left\{-1, 1\right\}^n\right\}\right]$
 - **b)** On a $R \in \mathcal{R}_n(A)$ si et seulement si $P^{-1}RP \in \mathcal{R}_n(D)$, donc

$$\mathcal{R}_n(A) = \left\{ P \operatorname{diag}\left(\varepsilon_1 \sqrt{\lambda_1}, \dots, \varepsilon_n \sqrt{\lambda_n}\right) P^{-1} \mid (\varepsilon_1, \dots, \varepsilon_n) \in \left\{-1, 1\right\}^n \right\}$$

- c) L'application $M \mapsto PMP^{-1}$ est un isomorphisme de $\mathcal{M}_n(\mathbb{R})$ donc $\operatorname{Card}(\mathcal{R}_n(A)) = \operatorname{Card}(\mathcal{R}_n(D))$. Si $\lambda_1 \neq 0$ alors chaque $(\varepsilon_1, \dots, \varepsilon_n) \in \{-1, 1\}^n$ définie un unique élément de $\mathcal{R}_n(D)$ donc $\operatorname{Card}(\mathcal{R}_n(D)) = \operatorname{Card}(\{-1, 1\}^n) = 2^n$. Si $\lambda_1 = 0$ alors $\mathcal{R}_n(D) = \left\{\operatorname{diag}\left(0, \varepsilon_2\sqrt{\lambda_2}, \dots, \varepsilon_n\sqrt{\lambda_n}\right) \mid (\varepsilon_2, \dots, \varepsilon_n) \in \{-1, 1\}^{n-1}\right\}$, ce qui donne $\operatorname{Card}(\mathcal{R}_n(D)) = \operatorname{Card}(\{-1, 1\}^{n-1}) = 2^{n-1}$. Ainsi : $\left[\operatorname{si}\lambda_1 \neq 0 \operatorname{Card}(\mathcal{R}_n(A) = 2^n \operatorname{et}\operatorname{si}\lambda_1 = 0 \operatorname{Card}(\mathcal{R}_n(A) = 2^{n-1})\right]$.
- 5. Soit $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$. $Sp_{\mathbb{R}}(A) = \{1, 2, 3\}$ donc A est diagonalisable.

Les sous espaces propres :
$$E_1(A) = \text{Vect}\left\{\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right\}$$
, $E_2(A) = \text{Vect}\left\{\begin{pmatrix} 0\\1\\0 \end{pmatrix}\right\}$.
Soit $X = \begin{pmatrix} x\\y\\z \end{pmatrix} \in E_3(A)$ donc $AX = 3X$ qui s'écrit $\begin{cases} x = 3x\\2y + z = 3y\\3z = 3z \end{cases}$, on obtient $X = \begin{pmatrix} 0\\y\\y \end{pmatrix}$ et $E_3(A) = \text{Vect}\left\{\begin{pmatrix} 0\\1\\1 \end{pmatrix}\right\}$.

On a
$$A = PDP^{-1}$$
 avec $D = \operatorname{diag}(1, 2, 3)$, $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ et $P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ Ainsi $\mathcal{R}_3(A) = \Big\{ P\operatorname{diag}\left(\varepsilon_1, \varepsilon_2\sqrt{2}, \varepsilon_3\sqrt{3}\right)P^{-1} \mid (\varepsilon_1, \varepsilon_2, \varepsilon_3) \in \{-1, 1\}^3 \Big\}.$

Partie 2

Cas où $A = \operatorname{diag}(\lambda_1 I_{n_1}, \dots, \lambda_r I_{n_r})$

- a) Soit R une racine carrée de I_n , on a $R^2 = I_n$, donc $X^2 1$ est un polynôme annulateur de R scindé 1. à racines simples, donc R est diagonalisable.
 - b) Soit $R \in R_n(I_n)$, donc R est diagonalisable, il existe P inversible et D diagonale telles que $R = PDP^{-1}$.

On a $R^2 = PD^2P^{-1} = I_n$ donc $D^2 = I_n$, les éléments diagonaux de D sont des racines carrées de 1, donc $D = \operatorname{diag}(\varepsilon_1, \dots, \varepsilon_n)$ avec $(\varepsilon_1, \dots, \varepsilon_n) \in \{-1, 1\}^n$. Réciproquement les matrices de cette forme sont racines de I_n .

Ainsi
$$R_n(I_n) = \{P \operatorname{diag}(\varepsilon_1, \dots, \varepsilon_n) P^{-1} \mid P \in GL_n(\mathbb{R}) \text{ et } \forall 1 \leq i \leq n, \varepsilon_i \in \{-1, 1\}\}$$

c) Soit $\lambda > 0$ et $R \in \mathcal{R}_n(\lambda I_n)$ donc $\left(\frac{1}{\sqrt{\lambda}}R\right)^2 = I_n$, on en déduit que

$$A > 0 \text{ et } R \in \mathcal{R}_n(\lambda I_n) \text{ donc } \left(\frac{1}{\sqrt{\lambda}}R\right) = I_n \text{ ,on en déduit que}$$

$$R_n(\lambda I_n) = \left\{P \operatorname{diag}\left(\varepsilon_1 \sqrt{\lambda}, \dots, \varepsilon_n \sqrt{\lambda}\right) P^{-1} \mid P \in GL_n(\mathbb{R}) \text{ et } \forall 1 \leq i \leq n, \varepsilon_i \in \{-1, 1\}\right\}$$

a) Soit $M = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}}$ une matrice de $\mathcal{M}_n(\mathbb{R})$ qui commute avec A.

Notons $A = \operatorname{diag}(\mu_1, ..., \mu_n)$ avec $\lambda_i = \mu_i$ si $i \in J_k$ avec

$$J_0 = [1, n_1]$$
 et $J_k = [n_1 + \dots + n_k + 1, n_1 + \dots + n_{k+1}]$ pour $k \in [1, r - 1]$.

Le calcul de la question 2)b) donne $(\mu_i - \mu_j) a_{i,j} = 0$ pour tout i et j dans [1, n].

Si $i \in J_k$ et $j \in J_h$ avec k et h dans [1, r-1] et $k \neq h$, alors $\mu_i = \lambda_i$, $\mu_j = \lambda_j$ et $\mu_i - \mu_j \neq 0$ ce qui donne $a_{i,j} = 0$. Donc tous les coefficients de M sont nuls à l'exception peut-être des coefficients $a_{i,j}$

tels que
$$(i,j) \in J_k \times J_k$$
 pour $k \in [1,r-1]$, cela signifie que M est de la forme $\begin{pmatrix} A_1 & (0) \\ & \ddots \\ & A_r \end{pmatrix}$,

où pour tout i de [1, r], A_i est une matrice de taille n_i .

Autre méthode: Soit M une matrice de $\mathcal{M}_n(\mathbb{R})$ qui commute avec A, soit f et g les endomorphismes de \mathbb{R}^n canoniquement associés, respectivement, à A et M, notons $\mathcal{B} = (e_1, ..., e_n)$ la base canonique de \mathbb{R}^n .

Posons pour k dans [1, r-1] $\mathcal{B}_k = (e_i)_{i \in J_k}$ et $F_k = \text{Vect}(\mathcal{B}_k)$. On a alors :

$$\mathbb{R}^n = \bigoplus_{k=0}^{n-1} F_k \text{ , pour tout } k \text{ dans } \llbracket 1, r-1 \rrbracket \text{ , } F_k = \ker(f-\lambda_k id) \text{ , et } \dim F_k = n_k.$$
On a g commute avec f , donc pour tout k dans $\llbracket 1, r-1 \rrbracket$, g commute avec $f-\lambda_k id$ par suite F_k

est stable par q.

Posons $Mat_{\mathcal{B}_k}(g_{|F_k}) = A_k \in \mathcal{M}_{n_k}(\mathbb{R})$, on a alors

$$M = Mat_{\mathcal{B}}(g) = \begin{pmatrix} A_1 & (0) \\ & \ddots & \\ (0) & A_r \end{pmatrix}$$

b) Les éléments de $\mathcal{R}_n(A)$ sont de la forme $\begin{pmatrix} A_1 & & (0) \\ & \ddots & \\ (0) & & A_r \end{pmatrix}$, où pour tout i de $\llbracket 1,r \rrbracket$, A_i est une

matrice de taille n_i , et évidement les matrices de cette forme sont dans $\mathcal{R}_n(A)$.

Ainsi
$$\mathcal{R}_n(A) = \left\{ \begin{pmatrix} A_1 & (0) \\ & \ddots \\ (0) & A_r \end{pmatrix} \mid A_i \in \mathcal{M}_{n_i}(\mathbb{R}) , \forall i \in \llbracket 1, r \rrbracket \right\}$$

- **2.** On muni $\mathcal{M}_n(\mathbb{R})$ de la norme N définie par $N(M) = \max_{1 \leq i,j \leq n} |m_{ij}|$, pour toute matrice $M = (m_{i,j})_{1 \leq i,j \leq n}$
 - a) On a $S_q^2 = I_2$ donc $S_q \in \mathcal{R}_2(I_2)$. Pour tout $q \ge 1$ on a $N(S_q) = q$ donc $\mathcal{R}_2(I_2)$ n'est pas borné dans $\mathcal{M}_2(\mathbb{R})$
 - **b)** Soit $n \geq 3$, posons $A_q = \begin{pmatrix} S_q & (0) \\ (0) & I_{n-2} \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$, on a $A_q \in \mathcal{R}_n(I_n)$ et pour tout $q \geq 1$ on a $N(A_q) = q$, donc $\mathcal{R}_n(I_n)$ n'est pas une partie bornée de $\mathcal{M}_n(\mathbb{R})$.

Partie 3

Cas où A est une matrice nilpotente

- 1. a) On a $B^{2p} = A^p = 0_n$ et $B^{2(p-1)} = A^{p-1} \neq 0_n$.
 - b) On a X^{2p} est un polynôme annulateur de B tandis que $X^{2(p-1)}$ n'est pas annulateur de B, donc π_B divise X^{2p} mais ne divise pas $X^{2(p-1)}$, donc $\pi_B(X) = X^k$ avec $2(p-1) < k \le 2p$ par suite $\pi_B(X) = X^{2p}$ ou $\pi_B(X) = X^{2p-1}$.
 - c) On sait que deg $\pi_B \le n$, d'après b) on a deg $\pi_B \ge 2p-1$, donc $2p-1 \le n$ et $p \le \frac{n+1}{2}$.
- **2.** Soit P un polynôme de $\mathbb{R}[X]$.
 - a) On a $\pi_A(X) = X^p$, donc $P^2 X 1$ est annulateur de A si et seulement si $\pi_A(X)$ divise $P^2 X 1$, ce qui est équivalent à $P^2(A) = I_n + A$ si et seulement si X^p divise $P^2 X 1$.
 - b) Soit Q_p le polynôme de $\mathbb{R}[X]$ tel que $\sqrt{1+x} = Q_p(x) + o\left(x^{p-1}\right)$ au voisinage de 0. Posons $\sqrt{1+x} = Q_p(x) + x^{p-1}\varepsilon(x)$ avec $\varepsilon(x) \underset{x\to 0}{\to} 0$, en élevant au carré cela donne

$$1 + x = Q_p^2(x) + x^{p-1} \left(2Q_p(x)\varepsilon(x) + x^{p-1}\varepsilon^2(x) \right)$$

 $\operatorname{donc} \ \frac{1+x-Q_p^2(x)}{x^{p-1}} \underset{x \to 0}{\to} 0, \ \text{ comme la fonction } x \mapsto 1+x-Q_p^2(x) \text{ est polynomiale alors elle ne contient pas de terme en } x^k \text{ avec } k \in \llbracket 0, p-2 \rrbracket \text{ ce qui singifie que } X^p \text{ divise } Q_p^2(X)-X-1, \text{ par suite } \boxed{Q_p^2(A)=I_n+A} \ .$

3. a) Soit $\alpha \in \mathbb{R}$. Si $\alpha = 0$ on a $I_n \in \mathcal{R}_n (\alpha A + I_n)$. Si $\alpha \neq 0$ alors αA est nilpotente d'indice p donc $Q_p^2(\alpha A) \in \mathcal{R}_n (\alpha A + I_n)$.

Ains $\mathcal{R}_n(\alpha A + I_n)$ est non vide pour tout $\alpha \in \mathbb{R}$.

- **b)** Soit $\beta > 0$, on a $\mathcal{R}_n\left(\frac{1}{\beta}A + I_n\right)$ est non vide . Si $R \in \mathcal{R}_n\left(\frac{1}{\beta}A + I_n\right)$ alors $\sqrt{\beta}R \in \mathcal{R}_n\left(A + \beta I_n\right)$ donc $\mathcal{R}_n\left(A + \beta I_n\right)$ est non vide.
- **4.** Posons $H = I_3 + N$ avec $N = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$. On a N est nilpotente d'indice 3.

D'après la question 2) on a $Q_2^2(N) = I_n + N = H$ donc $Q_2(N)$ est une solution de l'équation $X^2 = H$.

On a
$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + o\left(x^2\right)$$
 donc $Q_2(x) = 1 + \frac{x}{2} - \frac{x^2}{8}$. Par suite $Q_2(N) = I_3 + \frac{1}{2}N - \frac{1}{8}N^2$. Une solution de l'équation $X^2 = H$ est la matrice
$$\begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{8} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

Partie 4

Cas où A est une matrice carrée symétrique réelle positive

- 1. Soit M une matrice symétrique réelle, d'après le théorème spectral M est diagonalisable et $\mathcal{M}_{n,1}(\mathbb{R})$ (ou \mathbb{R}^n) admet une base orthonormée $(V_1,..,V_n)$ formée de vecteurs propres de M, notons λ_i la valeur propre associée à V_i , pout i dans [1,n].
 - Si $M \in S_n^+(\mathbb{R})$ alors pour tout X de $\mathcal{M}_{n,1}(\mathbb{R})$, ${}^tXMX \geq 0$, en particulier pour i dans $\{1,..,n\}$, ${}^tV_iMV_i \geq 0$.

On a $MV_i = \lambda_i V_i$ donc ${}^tV_i MV_i = \lambda_i {}^tV_i V_i = \lambda_i ({}^tV_i V_i = \|V_i\|^2 = 1)$, par suite $\lambda_i \geq 0$.

Donc Si $M \in S_n^+(\mathbb{R})$ alors toutes ses valeurs propres sont positives.

— Supposons que pour i dans [1, n] $\lambda_i \geq 0$.

Soit X dans $\mathcal{M}_{n,1}(\mathbb{R})$ alors il existe $\alpha_1,...,\alpha_n$ dans \mathbb{R} tels que $X=\sum_{i=1}^n \alpha_i V_i$.

On a $MX = \sum_{i=1}^{n} \alpha_i \lambda_i V_i$ et ${}^tXMX = \sum_{i=1}^{n} \alpha_i \lambda_i$ (tXV_i), d'autre part ${}^tXV_i = \sum_{k=1}^{n} \alpha_k$ ${}^tV_k V_i$, or $(V_1, ..., V_n)$ est une base orthonormée $\mathcal{M}_{n,1}(\mathbb{R})$ donc ${}^tV_k V_i = 0$ si $i \neq k$ et ${}^tV_k V_i = 1$ si i = k, ce qui donne ${}^tXV_i = \alpha_i$ et ${}^tXMX = \sum_{i=1}^{n} \lambda_i \alpha_i^2$.

On a pour tout i dans [1, n] $\lambda_i \geq 0$, donc ${}^t X M X \geq 0$ et $M \in S_n^+(\mathbb{R})$.

- **2.** Soit A une matrice de $S_n^+(\mathbb{R})$.
 - a) A est symétrique réelle, d'après le théorème spectral elle est diagonalisable et il existe deux matrices, P orthogonale et D diagonale de $\mathcal{M}_n(\mathbb{R})$, telles que $A = PDP^{-1} = P.D.^tP$, $D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$.
 - b) D'après la question 1) toutes ses valeurs propres de A sont positives, soit $\Delta = \operatorname{diag}(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$ et $S = P.\Delta.^t P$, on alors $S \in S_n^+(\mathbb{R})$ et $S^2 = A$.
- **3.** Soit $A \in S_n^+(\mathbb{R})$ et S_1 et S_2 deux matrices de $S_n^+(\mathbb{R})$ telles que $S_1^2 = S_2^2 = A$.

Soient $P_1.P_2 \in GL_n(\mathbb{R})$ et $D_1 = \text{diag}(\alpha_1, ..., \alpha_n)$, $D_2 = \text{diag}(\beta_1, ..., \beta_n)$ telles que, $S_1 = P_1D_1P_1^{-1}$ et $S_2 = P_2D_2P_2^{-1}$.

Comme $A \in S_n^+(\mathbb{R})$ alors $\alpha_i \geq 0$ et $\beta_i \geq 0$ pour tout $i \in [1, n]$.

- a) On a $S_1^2 = S_2^2$ donc $P_1 D_1^2 P_1^{-1} = P_2 D_2^2 P_2^{-1}$ et $P_2^{-1} P_1 D_1^2 = D_2^2 P_2^{-1} P_1$ ainsi $PD_1^2 = D_2^2 P_2$
- b) On a $PD_1^2 = D_2^2 P$ donc $D_1^2 = P^{-1}D_2^2 P$. Les matrices D_1^2 et D_2^2 sont semblables , elles ont donc le même spectre par suite $\alpha_i^2 = \beta_i^2 \ \forall i \in [\![1,n]\!]$, donc $\alpha_i = \beta_i$ pour tout $i \in [\![1,n]\!]$ (car $\alpha_i \geq 0$ et $\beta_i \geq 0$), d'où $D_1 = D_2$.

De la relation $D_1=P^{-1}D_2P$ et $P=P_2^{-1}P_1$, on obtient $P_1D_1P^{-1}=P_2D_2P_2^{-2}$, c'est-à-dire $S_1=S_2$.

Partie 5

Étude d'un cas où A est une matrice complexe

1. Soit $z \in \mathbb{C} \setminus \mathbb{R}^-$ alors $z = re^{i\theta}$ avec $\theta \in]-\pi$, $\pi[$ et r > 0. z admet deux racines carrées $z_1 = \sqrt{r}e^{i\frac{\theta}{2}}$ et $z_2 = -\sqrt{r}e^{i\frac{\theta}{2}}$.

On a $\operatorname{Re}(z_1) = \sqrt{r} \cos\left(\frac{\theta}{2}\right) > 0$ car $\frac{\theta}{2} \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[$. Don $y = z_1$ est l'unique complexe tel que $\operatorname{Re}(y) > 0$ et $y^2 = z$.

2. Le résultat est vraie pour n=1 d'après la question 1.

On le suppose vrai pour n. Soit $T=(t_{i,j})_{1\leq i,j\leq n+1}$ une matrice triangulaire supérieure de $\mathcal{M}_{n+1}(\mathbb{C})$, telle que pour tout i de $[\![1,n+1]\!]$, $t_{i,i}\notin\mathbb{R}^-$.

On a
$$T = \begin{pmatrix} t_{1,1} & t_{1,2} \cdots t_{1,n+1} \\ \hline (0) & T' \end{pmatrix}$$
 avec $T' = \begin{pmatrix} t_{2,2} & \cdots & \cdots & t_{2,n+1} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & t_{n+1,n+1} \end{pmatrix}$

Par hypothèse de récurrence il existe une matrice triangulaire supérieure $X'=(x_{i,j})_{2\leq i,j\leq n+1}$ telle que pour tout i de $[\![2,n+1]\!]$, $\operatorname{Re}(x_{i,i})>0$ et $X'^2=T'$.

Soit $x_{1,1}$ l'unique racine carrée de $t_{1,1}$ tel que $\operatorname{Re}(x_{1,1}) > 0$, posons $X = \left(\begin{array}{c|c} x_{1,1} & a_{1,2} \cdots a_{1,n+1} \\ \hline (0) & X' \end{array}\right)$.

Cherchons $a_{1,2} \cdots a_{1,n+1}$ pour que $X^2 = T$.

On a
$$X^2 = \begin{pmatrix} x_{1,1}^2 & y_2 \cdots y_{n+1} \\ \hline (0) & X'^2 \end{pmatrix} = \begin{pmatrix} t_{1,1} & y_2 \cdots y_{n+1} \\ \hline (0) & T' \end{pmatrix}$$
 avec

$$\begin{cases} y_2 = x_{1,1}a_{1,2} + a_{1,2}x_{2,2} \\ y_3 = x_{1,1}a_{1,3} + a_{1,2}x_{2,3} + a_{1,3}x_{3,3} \\ \vdots \\ y_{n+1} = x_{1,1}a_{1,n+1} + a_{1,2}x_{2,n+1} + \dots + a_{1,n+1}x_{n+1,n+1} \end{cases}$$

 $X^2 = T$ entraine

$$\left\{ \begin{array}{l} t_{1,2} = x_{1,1}a_{1,2} + a_{1,2}x_{2,2} \\ t_{1,3} = x_{1,1}a_{1,3} + a_{1,2}x_{2,3} + a_{1,3}x_{3,3} \\ \vdots \\ t_{1,n+1} = x_{1,1}a_{1,n+1} + a_{1,2}x_{2,n+1} + \ldots + a_{1,n+1}x_{n+1,n+1} \end{array} \right.$$

La première équation s'écrit $t_{1,2}=a_{1,2}\left(x_{1,1}+x_{2,2}\right)$, puisque $\text{Re}(x_{1,1}+x_{2,2})>0$ alors $x_{1,1}+x_{2,2}\neq 0$ ce qui donne $a_{1,2}=\frac{t_{1,2}}{x_{1,1}+x_{2,2}}$.

Supposons qu'on a calculé $a_{1,2},...,a_{1,k-1}$ pour $k\in\{2,...,n\}$ la k-ieme équation donne :

 $t_{1,k} = x_{1,1}a_{1,k} + a_{1,2}x_{2,k} + \ldots + a_{1,k}x_{k,k} \text{ , comme } x_{1,1} + x_{k,k} \neq 0 \text{ alors } a_{1,k} = \frac{t_{1,k} - a_{1,2}x_{2,k} - \ldots - a_{1,k-1}x_{k-1,k}}{x_{1,1} + x_{k,k}} \text{ .}$

Ainsi par récurrence on calcul les $a_{1,2} \cdots a_{1,n+1}$, ce qui définie la matrice triangulaire supérieure X telle que pour tout i de [2, n+1], $\text{Re}(x_{i,i}) > 0$ et $X^2 = T$, et le résultat est vrai à l'ordre n+1.

Donc pour toute matrice $T=(t_{i,j})_{1\leq i,j\leq n}$ triangulaire supérieure de $\mathcal{M}_n(\mathbb{C})$, telle que pour tout i de $\llbracket 1,n \rrbracket$, $t_{i,i}\notin \mathbb{R}^-$ il existe une matrice triangulaire supérieure $X=(x_{i,j})_{1\leq i,j\leq n}$ telle que pour tout i de $\llbracket 1,n \rrbracket$, $\operatorname{Re}(x_{i,i})>0$ et $X^2=T$.

3. Soit A dans $\mathcal{M}_n(\mathbb{C})$ et $Sp(A) \cap \mathbb{R}^- = \emptyset$. Le polynôme caractéristique de A est scindé donc A est trigonalisable, il existe une matrice P de $GL_n(\mathbb{C})$ et une matrice $T = (t_{i,j})_{1 \leq i,j \leq n}$ triangulaire supérieure, telle que $A = PTP^{-1}$, puisque pour tout i de [1, n], $t_{i,i} \in Sp(A)$ donc $t_{i,i} \notin \mathbb{R}^-$.

D'après la question 2) il existe une matrice triangulaire supérieure $Y=(y_{i,j})_{1\leq i,j\leq n}$ telle que pour tout i de $[\![1,n]\!]$, $\mathrm{Re}(y_{i,i})>0$ et $Y^2=T$, posons $X=PYP^{-1}$ on a $Sp(X)=Sp(Y)\subset\{z\in\mathbb{C}\mid \mathrm{Re}(z)>0\}$ et $X^2=A$.